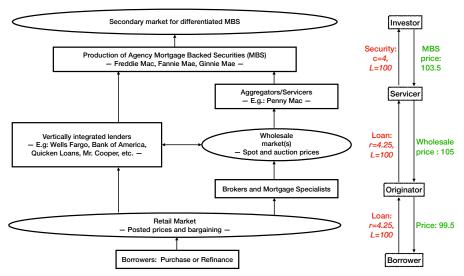
Asymmetric Information and the Supply Chain of Mortgages: The Case of Ginnie Mae Loans

> Jonathan Becker – UW-Madison Jean-François Houde – UW-Madison & NBER Kenneth Hendricks – UW-Madison & NBER Diwakar Raisingh – DOJ

> > October 24, 2022

Originate-to-Distribution (OTD) Supply Chain of Mortgages



Loan Values to Servicers

• Sellers in MBS market sell loans, but typically retain servicing rights

- Collect monthly interest payment from borrower at note rate r
- Pays the agency for insuring loan against default at rate g
- Pays the MBS coupon c to investors
- Keeps the difference: r g c (measured in p.p.)

Loan Values to Servicers

• Sellers in MBS market sell loans, but typically retain servicing rights

- Collect monthly interest payment from borrower at note rate r
- Pays the agency for insuring loan against default at rate g
- Pays the MBS coupon c to investors
- Keeps the difference: r g c (measured in p.p.)
- Sellers in the wholesale market sell loans + servicing rights.
 - Buyer's willingness-to-pay for the bundle depends upon resale price plus service income.
 - Service income depends upon (random) duration of the loan.
- Main source of risk: early prepayment (e.g., default, refinancing)

Loan Values to Servicers

• Sellers in MBS market sell loans, but typically retain servicing rights

- Collect monthly interest payment from borrower at note rate r
- Pays the agency for insuring loan against default at rate g
- Pays the MBS coupon c to investors
- Keeps the difference: r g c (measured in p.p.)
- Sellers in the wholesale market sell loans + servicing rights.
 - Buyer's willingness-to-pay for the bundle depends upon resale price plus service income.
 - Service income depends upon (random) duration of the loan.
- Main source of risk: early prepayment (e.g., default, refinancing)
- Key decisions by banks:
 - Security customization: (i) coupon, (ii) custom/multi-issuer pool
 - ► Acquisition price/bid: (i) wholesale price, (ii) upfront fee

Research question

• What is the *information structure* that generates wholesale prices and securitization decisions? Common or private value?

Research question

- What is the *information structure* that generates wholesale prices and securitization decisions? Common or private value?
- Why?
 - Private signals about pre-payment risk leads to a Winner's Curse in the wholesale market, and Lemon's problem in the MBS market
 - * Asymmetric information: Lower loan acquisition and MBS prices
 - ★ Borrowing costs are inversely proportional to loan value
 - IO/Bank competition literature:
 - * Banks have common beliefs about loan duration
 - * Price dispersion is due to idiosyncratic origination/servicing costs

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

Adverse selection in the MBS market:

- Variation: Limited ability to customize securities
- Chiappori and Salanié's correlation test:
 - Do sellers place higher duration loans in low coupon (high service-income) securities?
 - * Do they sell higher-duration loans in a custom pool security?
- Moral Hazard vs Adverse-selection

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

Adverse selection in the MBS market:

- Variation: Limited ability to customize securities
- Chiappori and Salanié's correlation test:
 - ★ Do sellers place higher duration loans in low coupon (high service-income) securities?
 - * Do they sell higher-duration loans in a custom pool security?
- Moral Hazard vs Adverse-selection
- Ommon-value test:
 - Auctions for loans without a coupon-choice option
 - Correlation between (residual) bids and loan duration (as in Hendricks, Pinkse and Porter)
 - Are lenders asymmetrically informed?

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

Adverse selection in the MBS market:

- Variation: Limited ability to customize securities
- Chiappori and Salanié's correlation test:
 - ★ Do sellers place higher duration loans in low coupon (high service-income) securities?
 - * Do they sell higher-duration loans in a custom pool security?
- Moral Hazard vs Adverse-selection
- Ommon-value test:
 - Auctions for loans without a coupon-choice option
 - Correlation between (residual) bids and loan duration (as in Hendricks, Pinkse and Porter)
 - Are lenders asymmetrically informed?
- Security customization and the Winner's Curse
 - What is the effect of the coupon-choice on bids and markups?

Summary of Findings

- Main results:
 - 4 Auctions price pre-payment risk more efficiently than posted-prices
 - Wholesale auctions have a significant common value component, and lenders are not equally informed: Winner's Curse
 - 3 Asymmetric information leads to adverse selection in the MBS market.
 - Ability to customize securities increases market power

Summary of Findings

- Main results:
 - Q Auctions price pre-payment risk more efficiently than posted-prices
 - Wholesale auctions have a significant common value component, and lenders are not equally informed: Winner's Curse
 - 3 Asymmetric information leads to adverse selection in the MBS market.
 - Ability to customize securities increases market power
- Implications:
 - Auctions improve information available to upstream lenders, and can lower securitization cost
 - O Market unraveling?
 - * Ability to customize MBS lower the value of "multi-issuer" pools
 - \star Wholesale market design determines the size of the wholesale market
 - ⇒ Information frictions *upstream* affect competition *downstream*

Related Literature

- Bank competition in the lending markets:
 - *Price dispersion:* Search frictions, differentiation, and cost differences
 - References: Allen et al (2015,2019), Crawford et al. (2018), Clark et al (2019), Buchak et al. (2019, forthcoming), Grigsby et al. (2020), Robles-Garcia (2022)

Related Literature

- Bank competition in the lending markets:
 - ► *Price dispersion:* Search frictions, differentiation, and cost differences
 - *References:* Allen et al (2015,2019), Crawford et al. (2018), Clark et al (2019), Buchak et al. (2019, forthcoming), Grigsby et al. (2020), Robles-Garcia (2022)
- The cost of financial intermediation:
 - Originate-to-Distribute and Fintechs: Stanton et al. (2014), Fuster et al. (2019, 2022)
 - Asymmetric information in MBS markets: Bernardo and Cornell (1997), DeMarzo (2005), Downing et al (2008), Agarwal et al (2012)

Related Literature

- Bank competition in the lending markets:
 - ► Price dispersion: Search frictions, differentiation, and cost differences
 - *References:* Allen et al (2015,2019), Crawford et al. (2018), Clark et al (2019), Buchak et al. (2019, forthcoming), Grigsby et al. (2020), Robles-Garcia (2022)
- The cost of financial intermediation:
 - Originate-to-Distribute and Fintechs: Stanton et al. (2014), Fuster et al. (2019, 2022)
 - Asymmetric information in MBS markets: Bernardo and Cornell (1997), DeMarzo (2005), Downing et al (2008), Agarwal et al (2012)
- Asymmetric information in other markets:
 - Adverse-selection: Chiappori and Salanié (2000), Cohen and Einav (2007), Adams, Einav and Levin (2012), Illanes and Padi (2021)
 - Common-value: Hendricks et al. (2003), Bhattacharya et al. (2022)

Outline

- 2 Loan valuations
- 3 Adverse-selection results
- 4 Common-value results
- 5 Security customization and wholesale prices

6 Conclusion

Secondary (MBS) market

• To-Be-Announced (TBA) forward market: Multi-issuers

- Bank agrees to delivery a pool of agency-insured loans to a buyer at a specified price, par value, coupon, maturity, and delivery date.
- Identity of loans unknown to buyer at trade date.
- Custom pool market: Single-issuer.
 - Identities of the loans are known to buyer at the trade date.
 - Roughly 25% in our sample (up from less than 10% in 2010)
- Customization decisions:
 - *Coupon:* Service income (r c)
 - Pool: Custom or Multi-issuer

Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - ★ Base prices are updated daily
 - * LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - ★ Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi

Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - ★ Base prices are updated daily
 - ★ LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi
- Optimal Blue (OB) loan exchange platform:
 - Active in both segments: $\approx 35\%$ market-share (prior to 2021)
 - 75% of loan exchanges done via auctions

Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - ★ Base prices are updated daily
 - ★ LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi
- Optimal Blue (OB) loan exchange platform:
 - Active in both segments: $\approx 35\%$ market-share (prior to 2021)
 - 75% of loan exchanges done via auctions
- Auction design (since 2018):
 - Loan-level first-price sealed bid auction (\approx 1-2 hrs)
 - Sellers invite buyers form their network (fixed)
 - Buyer-specific reserve price: Bid = max{Bulk, Lock}

Data Sources

- eMBS: provides detailed information on all agency MBSs and their component loans from January 2013 to present.
 - Observe monthly payment history until loan is prepaid.
 - Identity of seller
- Optimal Blue: auction data from Jan 2018 to present.
- HMDA: provides detailed information on all loans originated between 2013 to present, including identity of originator.
 - HDMA-eMBS: track loans from origination to securitization (retail vs non-retail) for HMDA sample period
 - HDMA-OB-eMBS: track loans from origination to auction to securitization for OB sample period
 - ▶ Match rates: OB eMBS is 86%, HMDA-OB is 82%.
- Bloomberg for MBS prices (TBA)

Sample

- **Sample:** 30-year fixed rate mortgages insured by Ginnie Mae, and benefit from Federal housing subsidies (FHA+VA)
- Why Ginnie?
 - riskier loans: LTV > 0.8
 - limited security customization
 - guarantee fee is fixed at 6 basis points for all lenders.
- $\bullet\,$ Ginnie Mae share $\approx 25\%$ of loan origination
- Loan performance:
 - $1(T_i > 12)$: 12-month survival
 - Combine pre-payment and default risk
 - Why? Default risk is insured by Agency

Summary statistics

Source: eMBS + OB

	Full sample		Matched samp	
	mean	sd	mean	sd
Note rate	4.2	.56	4.4	.61
Loan (×100K)	2.2	1.1	2.3	1
LTV	95	8.4	96	7
Credit Score	688	54	687	52
DTI	41	9.6	43	10
1(DTI > 40)	.58	.49	.63	.48
1(VA)	.34	.47	.29	.45
1(New purchase)	.76	.43	.83	.37
1(Retail)	.39	.49	.0023	.048
1(Correspondent)	.49	.5	.97	.16
Loan survival: 12 months	89	31	82	38
Loan survival: 36 months	57	50	30	46
Observations	751,794		59,821	
Period	2013-2019		2018-2019	

Auction Summary Statistics Source: OB 2018-2019

	mean	sd	p10	p50	p90
Client network size	18	4.7	12	17	26
Fraction network invited	.71	.17	.48	.74	.93
TBA Price (\$)	103	1	102	103	104
Bid (\$)	104	1.3	103	104	106
Winning bid (\$)	105	1.3	104	105	107
Bulk - TBA (\$)	1.6	.85	.65	1.6	2.5
Lock price - TBA (\$)	1.1	.94	055	1.3	2.1
Fraction bulk bids	.7	.2	.45	.75	.92
1(Bulk winning bid)	.9	.3	0	1	1
Winning margin: 1st - 2nd bid (\$)	.21	.23	.021	.14	.5
Gain: Winning bid - Highest lock (\$)	.73	.84	0	.45	1.8
Observations	670,562				
Auctions	61,583				

Pricing of Short-term Prepayment Risk

 $Pr(Survival|Z_i) = \Phi(Z_i\beta + Auction month + County)$ Net bid_i = $\lambda Pr(Survival|Z_i) + Date \times Rate + \epsilon_i$

	(1)	(2)	(3)
VARIABLES	Bulk bid	Lock bid	Winning bid
Predicted survival prob. (/SD)	0.16*	0.061^{*}	0.26*
	(0.0014)	(0.0023)	(0.0030)
Observations	480,419	187,006	59,821
R-squared	0.207	0.269	0.412
Across auction dispersion (std-dev)	0.58	0.58	0.58
Survival prob. std-dev	0.15	0.15	0.15

Takeaway

- Bulk bids price pre-payment risk more accurately than lock
- Cost of 12-month survival risk: 15% increase in survival probability = \$0.26 (45% of across auctions bid dispersion).

Hedonic bid regression

Bid Dispersion

	(1)	(2)	(3)	(4)
Baseline	\checkmark	\checkmark	\checkmark	\checkmark
Buyer FE		\checkmark	\checkmark	\checkmark
Buyer-specific slopes			\checkmark	\checkmark
Buyer-seller FE				\checkmark
R-squared	0.27	0.42	0.57	0.61
Standard-deviation residual	0.71	0.64	0.54	0.52

- Baseline: Loan size, FICO, DTI, Income, Purchase, FHA, Fixed-effects (Sellers, date x rate, county)
- Bidder asymmetries:
 - 30-point increase from bidder-specific intercepts and slopes
 - 4-point increase from seller-specific relationships

Within vs across bid dispersion

Model: Ex-post Loan Valuation

• Realized cash flows for \$100 loan i:

$$R_{i}(c) = P_{i}(c) + \sum_{\substack{\tau=1\\ \text{service multiple } (M_{i})}}^{T} \delta^{\tau} L_{\tau,i} \times \underbrace{\frac{r_{i} - g - c}{1200}}_{\text{service income}} - \text{Fixed cost}$$

- $P_i(c)$ is the MBS security price
- $L_{\tau,i}$ is unpaid balance at end of month τ .
- T is the (random) duration of the loan.
- Security price:
 - TBA price depends (increasing) on c, but not on (z, r).
 - Custom pool price depends on c AND (z, r) of every loan in the pool.

Information Structure

• Two models of values:

- PV model:
 - * Additive, idiosyncratic value shock S_{ij}
 - * Common beliefs about duration $M_i | Z_i$
 - * Implication: Dispersion in bids reflects dispersion in cost
- CV model:
 - ★ Bidders receive private signals S_{ij} about $M_i | Z_i \Rightarrow$ heterogenous beliefs
 - * Implication: Dispersion in bids reflects dispersion in expectations

Information Structure

• Two models of values:

- PV model:
 - * Additive, idiosyncratic value shock S_{ij}
 - * Common beliefs about duration $M_i | Z_i$
 - * Implication: Dispersion in bids reflects dispersion in cost
- CV model:
 - ★ Bidders receive private signals S_{ij} about $M_i | Z_i \Rightarrow$ heterogenous beliefs
 - * Implication: Dispersion in bids reflects dispersion in expectations

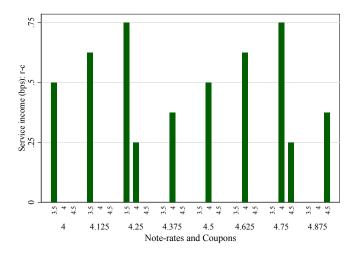
• Timing:

- Private signals: S_{ij}
- Bid preparation: B_{ij}
- Securitization: (i) coupon choice, (ii) custom/multi pool

Securitization: Coupon choice

• **Regulation:** $(r - c) \in [0.25, 0.75]$

- ▶ *r* is quoted in 0.125 increments, and *c* is quoted in 0.5 increments
- Coupon choice when r ends in 0.25/0.75: $c_H > c_L$



Securitization: Coupon choice

- Key: TBA price reflects the risk composition of the (giant) pool
- Tradeoff: Markup vs Upfront TBA price

$$\max_{c \in \{c_L, c_H\}} \frac{(r-c-g)}{1200} \bar{M}_i + P_c^{tba} - F_i$$
$$\Rightarrow c_i = c_H \text{ if } \bar{M}_i \le \frac{P_H^{tba} - P_L^{tba}}{(c_H - c_L)/1200}$$

- **Testable implication:** Loans placed in High-coupon securities (*low service income*) are more likely to be pre-paid early
 - ► Adverse-selection: (i) observed locan characteristics (Z_i), and (ii) private information (S_i)

Securitization: Custom vs Multi-issuer Pool

• Security price: Custom vs Multi

 $P_c^{custom} = c \times E[M_i | \text{Bank } j$'s custom pool]

 $P_c^{tba} = c \times E[M_i | \text{Multi-issuer pool}]$

• Cutoff-strategy:

Rank loans in portfolio for coupon c:

$$\bar{M}_1 > \bar{M}_2 > \cdots > \bar{M}_n$$

- Loans with $\bar{M}_i > m_c^*$ are placed in custom-pool
- ► Tradeoff: (i) security price, and (ii) securitization cost/diversification

Securitization: Custom vs Multi-issuer Pool

• Security price: Custom vs Multi

 $P_c^{custom} = c \times E[M_i | \text{Bank } j$'s custom pool]

 $P_c^{tba} = c \times E[M_i | \text{Multi-issuer pool}]$

• Cutoff-strategy:

Rank loans in portfolio for coupon c:

 $\bar{M}_1 > \bar{M}_2 > \cdots > \bar{M}_n$

- Loans with $\bar{M}_i > m_c^*$ are placed in custom-pool
- ► Tradeoff: (i) security price, and (ii) securitization cost/diversification
- **Testable implication:** Loans placed in multi-issuer pools are more likely to be pre-paid early

Auction: Winner's Curse

• Willingess-to-pay:

CV:
$$v_{ij} = \max_{c,s} (r-c-g) \times \overline{M}(Z_i, \mathbf{S}_{ij}) + P_c^s - F_i^s$$

$$\mathsf{PV:} \ v_{ij} = \max_{c,s} \quad (r-c-g) \times \bar{M}(Z_i) + P^s_c - F^s_i - \mathbf{S_{ij}}$$

where F_i^s is the common-component of cost.

- Predictions:
 - ► PV: Banks choose the same coupon/security ⇒ Differences in M
 are competed away
 - **CV:** Rival signals are informative about $v_{ij} \Rightarrow$ Winner's Curse

Auction: Winner's Curse

• Willingess-to-pay:

CV:
$$v_{ij} = \max_{c,s} (r-c-g) \times \overline{M}(Z_i, \mathbf{S}_{ij}) + P_c^s - F_i^s$$

$$\mathsf{PV:} \ v_{ij} = \max_{c,s} \quad (r-c-g) \times \bar{M}(Z_i) + P^s_c - F^s_i - \mathbf{S_{ij}}$$

where F_i^s is the common-component of cost.

- Predictions:
 - ► PV: Banks choose the same coupon/security ⇒ Differences in M
 are competed away
 - **CV**: Rival signals are informative about $v_{ij} \Rightarrow$ Winner's Curse
- Testable implications of common-value:
 - Monotonicity: Higher value loans are less likely to be pre-paid early
 - Winner's curse: Max rival bids is positively correlated with duration
 - Dispersion: Within auctions, bids are less dispersed for loans without coupon choice

Empirical Tests

Survival regressions:

$$\begin{array}{lll} Y_i &=& \lambda \text{Security choice}_{ij} + \text{Fixed-effects} + Z_i\beta + \epsilon_i \\ Y_i &=& \lambda_{\text{own}}\text{Bid}_{ij} + \lambda_{\text{rival}}\text{Rival Bid}_{ij} + \text{Fixed-effects} + Z_i\beta + \epsilon_i \end{array}$$

where $Y_i = 100 \times 1(T_i > 12)$, and Fixed-effects include $r \times t$. Control variables

- Adverse-selection tests (Chiappori and Salanié): $\lambda < 0$
 - Coupon choice: $\lambda_{high} < 0$
 - Security choice: $\lambda_{multi} < 0$
- Common-value tests (Hendricks, Pinkse and Porter):
 - Proxy for private signal \Rightarrow Bid residual (w/ bank-specific slopes)
 - PV: $\lambda_{own} = \lambda_{rival} = 0$
 - CV: $\lambda_{own} > 0$ (monotonicity) and $\lambda_{rival} > 0$ (Winner's Curse)

Results: Adverse-selection (1)

	(1)	(2)	(3)	(4)	(5)
VARIABLES				Retail	Wholesale
Panel A: Coupon ch	noice				
1(High coupon)	-3.96	-2.63	-1.61	-0.93	-0.90
	(0.35)	(0.33)	(0.26)	(0.31)	(0.28)
Obs.	2,627,016	2,627,016	2,619,080	1,067,970	1,481,475
Loan charact.	no	yes	yes	yes	yes
Fixed effects	$r \times t$	$r \times t$	r imes t imes f	r imes t imes f	$r \times t \times f$
Mean dep. var.	89.2	89.2	89.2	89.1	89.6
% Multi-issuer pool	0.83	0.83	0.83	0.86	0.78
% High Coupon	0.87	0.87	0.87	0.87	0.87

- Holding fixed r, loans placed in high-coupon (low service income) are ≈ 4% more likely to get pre-paid within 12 mo.
- Pricing of MBS: 65% of adverse-selection is due to observables
- Firm asymmetries: Banks who <u>never</u> use low-coupon (i.e. high liquidity needs) supply <u>less</u> performing loans

Results: Adverse-selection (2)

	(1)	(2)	(3)	(4)	(5)
VARIABLES				Retail	Wholesale
Panel B: Pool type					
1(Multi-issuer pool)	-10.0	-4.27	-2.87	-3.07	-2.62
	(0.29)	(0.22)	(0.22)	(0.23)	(0.22)
Obs.	8,469,486	8,469,486	8,438,337	3,348,467	3,959,362
Loan charact.	no	yes	yes	yes	yes
Fixed effects	r imes t	$r \times t$	r imes t imes f	r imes t imes f	$r \times t \times f$
Mean dep. var.	89.2	89.2	89.2	89.1	89.6
% Multi-issuer pool	0.83	0.83	0.83	0.86	0.78
% High Coupon	0.87	0.87	0.87	0.87	0.87

Takeaway

- Adverse-selection: Loans placed in multi-issuer pools are adverse-selected
- Firm asymmetries: Banks who <u>never</u> use multi-issuer pools (i.e. small lenders) supply <u>less</u> performing loans

Adverse selection vs Moral hazard

Supply Chain of Mortgages

Moral Hazard or Adverse Selection?

- Do lenders encourage borrowers to refinance their loans early so they can earn higher service income on new loan?
- Test using sample of loans **not** eligible for a coupon choice i.e., note rates that end in 0.375, 0.5, and 0.625.

• Regression:

$$Y_i = \lambda_1 \{r_i - c_i = 0.5\} + \lambda_2 \{r_i - c_i = 0.625\} + g(r_i) + Z_i\beta + \text{Fixed Effects} + u_i$$

- Loans with higher rates get pre-paid early: g'(r) < 0
- ► Loans with higher spread r c likely to be pre-paid if hypothesis is true $\Rightarrow \lambda_2 > \lambda_1 > 0.$

Results: Moral Hazard

	(1)	(2)	(3)	(4)	(5)
VARIABLES				Retail	Wholesale
Panel C: Service inc	ome				
r - c = 500 bbs	0.40	0.046	-0.39	-0.31	-0.45
	(0.15)	(0.15)	(0.11)	(0.12)	(0.13)
r - c = 625 bbs	1.05	0.60	-0.065	-0.11	-0.046
	(0.16)	(0.16)	(0.11)	(0.13)	(0.13)
Observations	4,385,138	4,385,138	4,384,537	1,819,522	1,970,036
Loan characteristics	rate+loan	all	all	all	all
Fixed effects	t	t	t imes f	t imes f	t imes f
Mean dep. var.	89.2	89.2	89.2	89.1	89.6

- Reject Moral Hazard hypothesis:
 - More profitable loans are slightly more likely to survive
 - Difference is fully explained by observed differences cross loans/banks

Results: Common-Value

Regression: $1(T_i > 12) = \lambda$ [Bid variables] + $Z_i\beta$ + Date × Rate + County + Seller + ϵ_{ij}

VARIABLES	(1) Bids	(2) Bids	(3) Residual	(4) Residual	(5) Winning bid	(6) Winning bid
Net bid	0.35* (0.056)	0.13* (0.045)			3.13* (0.34)	3.07* (0.34)
Max rival bid	(0.050)	(0.045) 2.62* (0.26)			(0.34)	(0.54)
Bid residual		(0.20)	0.59* (0.078)	0.36* (0.067)		
Max rival residual			()	0.85* (0.15)		
% bulk bids				()		3.42* (1.07)
Observations	666,099	666,099	437,402	381,010	59,353	59,353

- Winner's curse: Max. rival bids/winning bids are more informative
 - \$0.75 \uparrow in win. bid ightarrow 3.13% \downarrow in pre-payment (pprox 10%)
- Comparison: Refi. loans are 3.88% less likely to survive

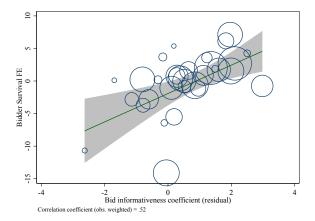
Asymmetries in Signals

• Bid informativeness: Same regression as before with bidder-level slopes

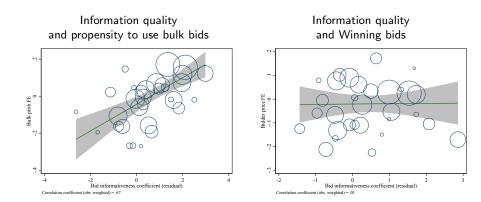
$$I(T_i > T) = \lambda_j$$
Bid residual_{ij} + $Z_i\beta$ + Fixed effects + ϵ

• Bidder survival FE: Measure of bank "productivity", centered at zero.

 $1(T_i > T) = Z_i\beta + \text{Fixed effects} + \omega_j 1(\text{Bank } j \text{ wins}) + \epsilon$



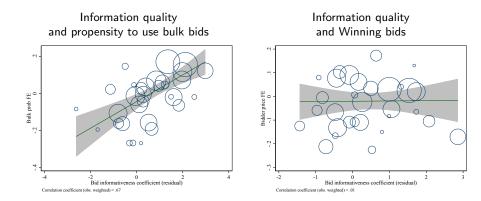
Information quality and Bids



Left: 1(Bulk bid)_{ii} = $Z_i\beta$ + Fixed effects + Bidder FE + ϵ

Right: Win. bid_i = $Z_i\beta$ + Fixed effects + ω_i 1(Bank j wins) + ϵ

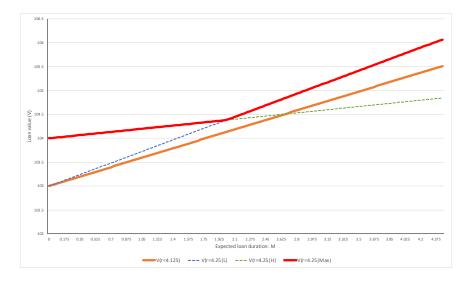
Information quality and Bids (cont.)



- Informed bidders more likely to submit a bulk bid, less informed more likely to submit lock
- Less informed bidders are subject to the Winner's Curse.

What is the effect of the coupon-choice option on bids?

Illustration: Value function for two note-rates



What is the effect of the coupon-choice option on bids?

- Loans placed in *high-coupons* MBS are adversely-selected
 - Coupon-choice option increases WTP of informed lenders
- Heterogeneity in coupon decisions within auctions:
 - Banks have different beliefs about \bar{M}_i
 - Asymmetries: (i) information quality, (ii) ability to customize securities

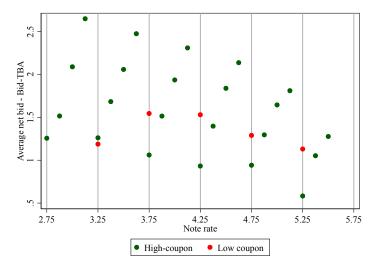
What is the effect of the coupon-choice option on bids?

- Loans placed in *high-coupons* MBS are adversely-selected
 - Coupon-choice option increases WTP of informed lenders
- Heterogeneity in coupon decisions within auctions:
 - Banks have different beliefs about \bar{M}_i
 - Asymmetries: (i) information quality, (ii) ability to customize securities

• Implication for bids:

- ▶ Bids do not (fully) reflect ↑ in value created by adverse-selection
- Larger markups for loans with a coupon-choice option
 - ★ Winner's Curse: Type-H lenders adjust bid down
 - * Type-L lenders have market-power (e.g. liquidity advantage)

Are winning bids consistent with adverse-selection? $Dot = Average net-bid conditional on Z_i$



Distribution of coupons and performance

Supply Chain of Mortgages

What is the effect of security customization on bid dispersion and levels?

Regression: $Y_i = \beta 1$ (Coupon-choice) + $g(r) + Z_i \gamma + FE + \epsilon_i$

VARIABLES	(1) Bids	(2) Dispersion	(3)	(4) auction	(5) Overtile	(6)
VARIADLES	DIUS	Dispersion	P(10)	P(90)	P(10)	regression P(90)
1(Coupon-choice)	-0.34	0.060	-0.48	-0.26	-0.53	-0.33
	(0.0074)	(0.0028)	(0.011)	(0.0083)	(0)	(0)
Observations	892,516	80,453	80,470	80,470	892,516	892,516
Dep. variable	104	0.56	103	103	104	104

Takeaway

Loans with a coupon-choice choice exhibits:

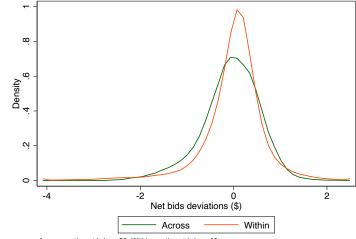
- More dispersion in values and higher markups
- Winner's Curse: Type-H lenders lower bids for coupon-choice loans

Conclusion

- Main Results
 - Banks value loan duration, and price it more efficiently in the auction than in the posted price market.
 - Auction is a common value auction with differentially informed bidders.
 - Asymmetric informationleads to adverse selection in the MBS market.
 - Ability to customize securities increases market-power in the wholesale market
- To Do
 - Adverse selection in wholesale market: Do originators sell higher duration loans in MBS market, lower duration loans in wholesale market?
 - Impact of the auction on borrowing costs: how much of the gain is passed on to borrower?

APPENDIX

Bid dispersion: Within and across auctions



Across auction std-dev: .58. Within auction std-dev: .68

Pricing of Risk Attributes

Regression: $Y_i = Z_i\beta + \text{Date} \times \text{Rate} + \text{County} + \text{Seller} + \epsilon_i$

	(1)	(2)	(3)
VARIABLES	Survival (12m)	Buľk bid	Lock price
Loan (/1000)	-15.1*	-0.20*	0.36*
	(0.77)	(0.011)	(0.012)
Loan-sq. (/1000)	1.14^{*}	0.016^{*}	-0.061*
	(0.14)	(0.0023)	(0.0021)
1(Purchase)	3.88*	0.056*	0.072*
	(0.65)	(0.0051)	(0.0077)
LTV	21.3*	-0.054*	0.087*
	(3.18)	(0.026)	(0.036)
FICO	-53.3*	5.27*	6.85*
	(3.86)	(0.036)	(0.052)
1(FHA)	8.02*	0.26*	0.32*
	(0.42)	(0.0035)	(0.0048)
DTI: 50-60	-2.50*	-0.045*	0.0020
	(0.66)	(0.0056)	(0.0078)

- Bulk: Hedonic prices match main survival attributes (expt. FICO)
- Lock prices not as well, but fit is much better, pprox deterministic.

Return

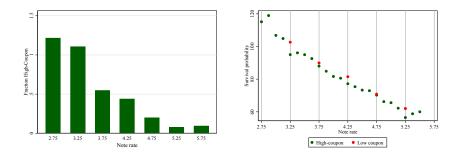
Control Variables

• Baseline specifications: Period x Note-rate fixed effects

- MBS sample: Issuance month
- Auction sample: Auction date
- Loan attributes:
 - Loan size, FICO, LTV, Refi/Purchase, Income (auction), DTI, Agency (VA/FHA), Zip-code house value
 - Geography: County (Auction), State (MBS)
- Origination channel:
 - Auction: Originator (Seller) fixed-effects
 - MBS: Channel, Issuer fixed-effects

Return

Coupon choice and average survival Dot = Average 12-month survival conditional on Z_i



• Sample: Auctions for loans pooled in multi-issuer securities

Return